ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES

نویسندگان

چکیده

In this paper considers a generalized fractional-maximal operator, special case of which is the classical function. Conditions for function Φ, defines function, and weight functions w v, determine weighted Lorentz spaces Λp(v) Λq(w) (1 < p ≤ q ∞) under maximal-fractional operator bounded from one space to another are obtained. For fractional maximal Hardy-Littlewood such results were previously known. When proving main result, we make essential use an estimate nonincreasing rearrangement operator. addition, introduce supremal conditions boundedness in Lebesgue This result also essentially used proof theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces

The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.

متن کامل

Necessary and Sufficient Conditions for the Boundedness of Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces

and Applied Analysis 3 For all x, y, z ∈ R, we put Wα ( x, y, z ) : ( 1 − σx,y,z σz,x,y σz,y,x ) Δα ( x, y, z ) , 2.5

متن کامل

On the Boundedness of Classical Operators on Weighted Lorentz Spaces

Conditions on weights u(·), v(·) are given so that a classical operator T sends the weighted Lorentz space Lrs(vdx) into Lpq(udx). Here T is either a fractional maximal operator Mα or a fractional integral operator Iα or a Calderón–Zygmund operator. A characterization of this boundedness is obtained for Mα and Iα when the weights have some usual properties and max(r, s) ≤ min(p, q). § 0. Introd...

متن کامل

On the Bouundedness of Fractional B-maximal Operators in the Lorentz Spaces

In this study, sharp rearrangement inequalities for the fractional Bmaximal function Mα,γf are obtained in the Lorentz spaces Lp,q,γ and by using these inequalities the boundedness conditions of the operator Mα,γ are found. Then, the conditions for the boundedness of the Bmaximal operator Mγ are obtained in Lp,q,γ .

متن کامل

On the boundedness of the Marcinkiewicz operator on multipliers spaces

Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ????? ?????????

سال: 2023

ISSN: ['2521-6465', '2413-3558']

DOI: https://doi.org/10.26577/jmmcs.2023.v118.i2.01